Horse Shoe in Run 2B

Two options

- A: 4-channel Adapter Card
 - 37 columns x 3 rings = 111 ch
 - Total 111 x 4 x 2 = 888 ch
 - Dimensions : 6.7" x 3"
- B: 4- & 6-channel Adapter Cards
 - 108 channels in L0-1 with 3-fold symmetry
 - 336 channels in L2-5 with 2-fold symmetry
 - 34 columns; 3 rings
 - outer ring : 18x6 + 16x4 = 108 (L0-1) + 64 (L2-5) = 172 ch
 - middle & inner ring : 34x4 = 136 ch each ring
 - Total $(172 + 136 + 136) \times 2 = 888 \text{ ch}$
 - Dimensions:
 - 4-ch. AC: 7.3" x 3"
 - 6-ch. AC: 10.7" x 3"
 - Have drawings

Other considerations

- High Voltage
 - L2-5 : max 300 V
 - Go through IB to AC via 80-conductor cable
 - From AC go to twisted pair cable via 6-pin Omnetics connector
 - L0-1:1000 V
 - HV cable will bypass AC completely
 - Separate connector (LEMO?)
 - Works OK both to options A or B
- Symmetry
 - Option A
 - L2-5: stave = 4 hybrids = 2 L2-5 JC = 1 AC
 - L0 : sector = 6 hybrids = 2 L0-1 JC = 1.5 AC
 - L1 : 2 sectors = 6 hybrids = 2 L0-1 JC = 1.5 AC
 - Mapping for L0-1: 4 JC => 3 AC. Problem?
 - Option B
 - L2-5: stave = 4 hybrids = 2 L2-5 JC = 1 AC
 - L0 : sector = 6 hybrids = 2 L0-1 JC = 1 AC
 - Mapping is straightforward

Other considerations cont'd

- Other stuff at the Horse shoe
 - Cards for radiation monitors
 - Run 2A cards & cables can be recycled (Sijbrand de Jong)
 - 6 doublets per side, round cables
 - Cards for 4-point temperature monitors
- 80-conductor cables
 - Have 80 bundles on the face of the calorimeter
 - Will need to rearrange them 80/2 = 40 => 37 or 34 bundles. Looks possible
 - Any changes of bundles on IB side will have effect as well

Other considerations cont'd

- Other grounding scheme of AC
 - Run 2A
 - Horseshoe not connected to Central Calorimeter
 - Common ground for all ACs
- Power dissipation

```
type AVDD DVDD power (for 2.75 V) power per chip 2 chip 120 mA 220 mA 0.94 W 0.47 W 6 chip 360 mA 340 mA 1.93 W 0.32 W 10 chip 600 mA 460 mA 2.92 W 0.29 W
```

- Dissipate inside 2236 W (144 L0, 72 L1, 672 L2-5 hybrids)
- Dissipate outside
 - $2236 \times 0.8/2.75 / 2 = 325 \text{ W}$ per side from voltage regulators
 - +? from the rest of Adapter Card
- Water cooling?